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Abstract—The trends of the increasing middleboxes make
the middle network more and more complex. Today, many
middleboxes work on application layer and offer significant
network services by the plain-text traffic, such as firewalling,
intrusion detecting and application layer gateways. At the same
time, more and more network applications are encrypting their
data transmission to protect security and privacy. It is becoming
a critical task and hot topic to continue providing application-
layer middlebox services in the encrypted Internet, however, the
state of the art is far from being able to be deployed in the
real network. In this paper, we propose a practical architecture,
named PlainBox, to enable session key sharing between the
communication client and the middleboxes in the network path.
It employs Attribute-Based Encryption (ABE) in the key sharing
protocol to support multiple chaining middleboxes efficiently and
securely. We develop a prototype system and apply it to popular
security protocols such as TLS and SSH. We have tested our
prototype system in a lab testbed as well as real-world websites.
Our result shows PlainBox introduces very little overhead and
the performance is practically deployable.

I. INTRODUCTION

Although originally the Internet was designed to have
a simple core and push complex functions into edges, the
existing network is no longer simple. There are an increas-
ing number of network appliances, or middleboxes, inside
the network and perform critical network functions, such as
firewalling, load balancing, intrusion detecting, and application
layer gateways [1]. Many of these middleboxes need to access
packet data, and some of them may even need to modify
the packets on-the-fly [2]. For example, application proxies
may be deployed by an enterprise IT department to reduce the
network traffic and provide better response time for users [3].
As another example, an Internet Service Provider (ISP) may
want to deploy an intrusion detection and prevention system
(IDPS) that may scan the packet data for intrusion signatures.
Moreover, there are an increasing number of middleboxes
chaining on the same path with the rapid deployment of NFV
[4] and Service Function Chaining [5].

However, the recent trend of applying encryption in com-
munications imposes new challenges to these middlebox ser-
vices. The rapid adoption of secure communication protocols
is mainly driven by the requirement to protect user security
and privacy. These security protocols employ cryptography and
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may secure communication at different layers. For example,
TLS [6] secures TCP payloads, SSH [7] provides application
layer security and IPsec [8] encrypts data at network layer.
Since the keys are only negotiated at the communication ends,
the middleboxes cannot decode the encrypted packets and as a
consequence, many functions have to be disabled if they need
to look into the plain-text of the user data, such as in-network
caching and intrusion detection.

To address this challenge, previous work has either pro-
posed new methods to work without decrypting the packets
(e.g., Blindbox [1]), or modified certain security protocols
(e.g., mcTLS [2]) to allow sharing session keys between
communication end points and the middlebox services. How-
ever, previous approaches are far from ideal. Blindbox only
supports very limited middlebox functions on limited data
types (e.g., keywords matching), and even for these functions
the performance (e.g., accuracy) may also degrade largely
[1]. When a middlebox targets at a flow, it still requires the
communication endpoints to provide their session key and
decrypt user traffic to get the plain-text data.

On the other hand, though mcTLS provides a mechanism
for TLS client and server to share their session keys with a
middlebox, it is not practical for two reasons. First, it requires
the TLS server to be involved into the key exchange process.
In today’s Internet, TLS has already been largely deployed in
websites and to update all websites is very expensive. Even
a large ratio of websites are still using quite old version of
SSL, which has been deprecated for security reason. It does
not even support the key sharing between a user device and a
middlebox owned by the user side without updating the TLS
server. Second, mcTLS explicitly defines new messages in the
TLS handshake protocol to exchange middlebox certificates
and session keys. The new messages must be standardized
(e.g., in IETF) before it can be actually deployed, which may
be very difficult and time consuming due to security reasons
[9]. Defining new message also require a lot of changes to
application source code, which is not practical especially on
user-side devices that all application code should be modified
and recompiled. Due to the difficulty in changing user-side
software, the mcTLS work even didn’t port a full-blown web
browser in its implementation [2].

To solve the problem, we want to design a more practical
session key exchange mechanism by using an out-of-band
channel for its additional information exchange. A direct
solution is to create a separate keep-alive TCP connection
between the user device and the middlebox. However, since
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the middlebox must provide its certificate for authentication
and it is always the middlebox to first talk to the user, due to
the largely deployed Network Address Translation (NAT), it
is very difficult for a middlebox to initiate a TCP connection
with a user. In addition, a keep-alive connection doesn’t work
because a user cannot know whether a known middlebox will
locate on the path of the future flows to be created. Meanwhile,
many networks perform ECMP load balancing on 5-tuples
(source and destination IP addresses, source and destination
ports, and transport protocol) so the TLS flow and the side
channel may go through different paths.

In this paper, we propose a practical architecture, named
PlainBox, to enable session key sharing among the communi-
cation endpoints and the middleboxes in the network path.
Instead of modifying existing security protocols, PlainBox
provides a secure out-of-band control plane to authenticate the
middlebox services and it allows users to specify their sharing
policies. The message exchange is embedded into the original
5-tuple data flow by a system-level agent to pass through
NAT and ensure forwarding path over ECMP load balancing.
PlainBox provides a simple user device API, through which
applications may specify the policies and input session keys.
Based on these policies, PlainBox will share the session keys
to only trusted middleboxes, which may later use the keys
to decipher encrypted packets. PlainBox employs Ciphertext-
Policy Attribute-Based Encryption (CP-ABE) [10] in the key
sharing protocol design. It uses only a single message exchange
to share keys to multiple middleboxes in a chain. Since the
original protocol handshake is not changed in PlainBox, the
server-side application service does not need to be modified,
and the network function of the client-side application does
not need to be changed neither. As a result, it would be much
easier to extend PlainBox support to new applications.

We apply PlainBox to a set of protocols such as TLS, IPsec,
SSH, and their combinations (e.g., TLS over IPsec). We have
implemented PlainBox in Linux for user devices and extended
the middleboxes to support PlainBox for accessing encrypted
traffic. We have also built supports on different applications
to use PlainBox API to share session keys with trustworthy
middlebox services. Supporting PlainBox only require very
few changes to user-side applications, and we can even support
web browsers (e.g., Chrome and Firefox) without any changes
to their source code or recompilation. We have tested our
prototype system for performance on both handshake and data
processing. Our results show PlainBox introduces very little
overhead for key sharing and achieves good performance, so
it is practically deployable in real network.

The rest of the paper is organized as follows. We intro-
duce the background information for our system in §II. §III
describes the PlainBox system design. We then describe the
specific design of the key sharing protocol in §IV. In §V-
VI we describe the implementation of PlainBox and gives
the evaluation result. Then we discuss related work in §VII.
Finally, we conclude our work in §VIII.

II. BACKGROUND

A. Middleboxes

Conventionally, packets on the Internet are transmitted just
using clear text, from IP to application-layer protocols (e.g.,

HTTP). Nowadays people have paid more and more attention
to security and privacy in network transportation because any
device on the path can look into the flow data and even modify
the content. It brings two types of middle-network watchers.
The attackers collect user privacy for malicious usage and
modify the packet to attack the hosts or servers. There are also
friendly watchers which improve the network performance,
functionality, and even security by accessing to plain-text data
of network traffic.

Today middleboxes have already been widely deployed by
ISPs and ICPs. For example, an ISP may deploy an intrusion
detection and prevention system (IDPS) to improve network
security or provide in-network web caching to enhance web
services. A middlebox service may also be owned by the
network user to provide better network function while locates
at the cloud across the middlebox network [3], [11].

Different middlebox services may require different access
to the plain-text user data. For example, a silent firewall reads
plain-text data and just block the whole session once it matches
the rule. A load balancer reads data for better selection without
modifying the packet content. When the firewall is able to write
into the plain-text data flow, it can send a warning to the user
which results in a better service. An in-network caching system
may need to be able to send redirect message to a user and
it also requires writing to the plain-text data. An application-
layer gateway requires writing to the plain-text data to modify
protocol data online [12].

B. Security Protocols

To improve transportation security and privacy for end
users, the best approach is to do encryption at data transmis-
sion. It simply encrypts all the payload and prevents middle
attackers from understanding the original plain-text content.
The encryption may be performed at several protocol layers,
including network layer and transport layer.

Today many protocols that with data encryption have
been widely used on the Internet. SSL/TLS [6] is a popular
transport-layer encryption protocol which is widely used by
HTTP as HTTPS. SSH [7] is also used for carrying other
protocols or directly providing applications such as sftp. The
mature development on cryptography protocols attracts appli-
cations to directly use them as underlying protocols instead of
re-designing a new protocol (e.g., using TLS for DNS [13],
XMPP [14], and Email [15]).

III. PLAINBOX DESIGN OVERVIEW

In this section, we introduce the PlainBox system design.
We summarize the design goals and then describe the system
functions. Given the middlebox’s identity, we allow the user to
decide different permissions to the middlebox. We then discuss
the security issues in our system. The specific description of
the protocol design is at §IV.

A. Design Goals

Keep Security Protocol Unmodified In order to do session
key sharing, we need to import additional message exchange
between the communication endpoint and the middlebox.
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However, it is very expensive to insert new content into the o-
riginal handshake protocols due to the difficulty in standardiza-
tion. Without the standardization, it is very difficult to upgrade
all client and server applications to support the new protocol
messages in order to deploy the new function. Therefore, our
design tries to keep the security protocols unmodified and
keep client-side applications (e.g., web browser) unchanged
by using out-of-band message exchange.

Achieve Server-side Transparency Though both the user
device and the server share the same symmetric keys in
security protocols, a system that requires updates on the server
side is very difficult to be deployed. Since we could not update
all the servers on the Internet at a stroke, if some of the servers
do not support the new protocol requirements, the key-sharing
function has to be disabled when a user device connects to
the servers. In the other hand, for a client-side mechanism,
an updated user device can make full use of the new feature
regardless of whether other user devices are updated. To be
more practical, we only involve the user device into the key
sharing system and keep the server transparent. It allows us to
easily deploy PlainBox with only a few software updates on a
user device.

Efficient Middlebox Authentication In the real world, a user
device typically generates multiple data flows from one or
more applications when accessing the Internet. A middlebox
may also serve a user device for multiple flows on multiple
different protocols. Consider that PlainBox should be generic
to support multiple security protocols and require minimal
effort to extend the support for new protocols, we separate
the middlebox authentication process from the key-sharing
handshake.

B. Threat Model

In PlainBox, we require the user device to perform au-
thentication of middlebox device, so we can assume that
the user is aware of all the middleboxes in the protocol. In
order to make sure the middlebox does not perform malicious
operations over user traffic, we require there to be a centralized
certificate authority to validate and distribute certificates with
valid attributes to middleboxes. Based on the PKI model, we
allow the clients to share their session keys with the trusted
middleboxes. However, it is still possible that a middlebox may
be compromised due to software attack or even malicious OS
and operator. In this case, hardware-based trusted execution
environment (e.g., Intel SGX [16]) can be used on the mid-
dlebox to prevent the attacks from OS and privileged users.

On the user device, we assume all the software environ-
ments are trusted, including the applications and OS. Since we
import an additional user agent to manage application keys and
permissions, in case the user device software environments are
untrusted, SGX should be deployed to protect the user agent.
The server is transparent to PlainBox protocol, so we do not
introduce any requirement to the server.

C. Design Overview

The main task of the PlainBox is to safely share the
user’s session keys with the middleboxes and to enable the
middleboxes access to the plain-text of the network traffic. In
order to protect user security, we require that the middlebox
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Fig. 1: PlainBox handshake flow for middlebox authentication
and key sharing.

should be non-transparent to a user and allow the user to
authenticate a middlebox. When a user decides to trust a
middlebox, it can then execute the key sharing process when
it creates an encrypted connection. The user device and the
middleboxes use a protocol based on ABE for security and
scalable key exchange.

The middlebox classifies all input traffic for interested
flows. Once an interested flow enters, the middlebox identifies
the user identity of the flow. If the flow is sent from a new user
device, the middlebox initiates an authentication request to the
user device by sending its certificate and target information
(e.g., target protocol and target destination domain). The
authentication process follows the public key infrastructure
(PKI) and the certificate should be signed by trusted certifi-
cate authority (CA). Once the authentication successes, the
middlebox is able to receive the user keys of the requested
protocols on each encrypted flow generated by the user. Then
the middlebox can decrypt the encrypted session data and then
use the plain-text data for further processing.

On the user side, we design a unified user device agent
to manage permissions and policies for key sharing. The
user agent is responsible for authentication requests from
middleboxes and verifies the identity of the middlebox. The
agent interacts with the local applications running encrypted
protocols by providing an API for key registration. On the
generation of a session, the corresponding application calls
the API to register its key to the user agent.

Since PlainBox requires exchanging extra information be-
tween the user and the middleboxes for middlebox authen-
tication and key exchange, it introduces two extensions to
the protocol handshake as shown in Figure 1. The additional
protocol exchange generally happens at the beginning of an
encrypted flow during the handshake phase of the original
encryption protocol. In addition to the original handshake, our
information exchange is out of band between user device agent
and the middleboxes, and doesn’t involve the server or client-
side application at the original end points for generic purpose.

IV. PLAINBOX PROTOCOL DESIGN

In this section, we describe the design of the PlainBox
protocol on key sharing and middlebox authentication. We
start from the basic out-of-band handshake protocol, then we
introduce an optional mechanism to share keys with multiple
middleboxes efficiently.
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A. Basic Handshake Protocol

The basic handshake flow of PlainBox is shown in Figure
1, including per-user middlebox authentication and per-session
key sharing. In addition to the original protocol handshake, we
need to exchange extra information between the user device
and the middlebox, including the middlebox’s certificate and
the user’s session keys for sharing. In order to exchange
information between users and middleboxes, either changing
existing protocol handshake process or issuing out-of-band
message exchange is necessary. We find that directly mod-
ifying protocols requires defining new message and states
for the specific protocol which lacks extensibility to other
protocols. Therefore, in the PlainBox design we choose out-
of-band message exchange for both middlebox authentication
and key sharing.

The authentication requires the middlebox to send its
certificate and related information to the user. In the traditional
IPv4 Internet, the user is likely to behind NAT and is using
a private IPv4 address. In this case, it is difficult for a
middlebox to directly send messages to the user in a separate
flow. Moreover, when there are multiple middleboxes requiring
the keys from the same flow, we want to do key sharing
only once to reduce the overhead on traffic and computation.
However, the load balancer in real world network performs
load balancing on 5-tuples. A message sent from the user
device to the server may go through a different path with the
original data flow so that the middleboxes may be unable to
receive the message.

To solve the issue, we encapsulate our message into the
packets with the same characteristic as the original flow
through our additional message exchange is out-of-band. For
example, if the original protocol is based on TCP, we also send
our messages through the same TCP flow. In order not to affect
original protocol, the original server and client application are
required to ignore the transmission messages we choose in
each protocol.

To reuse existing protocols, we need to use options in
protocol headers to carry additional information and signal the
packet content. The server can directly drop such messages
and does not need to understand the meaning. However, using
protocol options may cause the packet dropped by routers
in middle network. According to previous measurements on
IP options [17], [18], IPv6 extension headers [19] and TCP
options [18], [20], [21], we know that the TCP options
and IPv6 extension headers have been widely supported by
middle network and can be used safely, however using IPv4
options may face a high risk to be dropped in the middle
network. Therefore in PlainBox protocol design, we prefer
using TCP options when the original handshake protocol is
using TCP, and also use IP options/extension headers for non-
TCP protocols.

B. 1:N Key Sharing between User and Middleboxes

In order to safely share the user keys with the middleboxes,
the keys to be sent must be encrypted using the public keys
from the middleboxes. In mcTLS [2] regular asymmetric
encryption is used. It only supports the scenarios that only
a small number of middleboxes present on the network path
requiring the plain-text of the flow. For each middlebox on

Fig. 2: Key sharing with multiple chaining middleboxes. The
keys are encrypted using ABE by the user and sent to the
server. Only middlebox from the local network and the ISP1
network is able to decrypt the data and get the keys. The server
ignores the key-sharing message.

the path, the user devices have to encrypt the keys and send
the encrypted result out once. The overhead on computing and
transmission increases with the number of middleboxes so it
does not scale in practice.

In the PlainBox, we design a more efficient key-sharing
mechanism for the multiple chaining middleboxes on the
same path. By merging the key-sharing message, we want to
achieve sending only one copy of encrypted keys to all trusted
middleboxes while still keeping the security on the sharing
process. The key sharing process is shown in Figure 2. To
achieve this, we make use of the Ciphertext-Policy Attribute-
Based Encryption (CP-ABE) [10], [22] mechanism. In the
traditional public-key cryptography, the data is encrypted using
a public key and only the one who owns the private key is able
to decrypt the plain-text data. In CP-ABE, each ciphertext is
specified with a policy which is a boolean expression of several
attributes. Each key is associated with a set of attributes. A user
can decrypt a ciphertext only if user key’s attributes match the
ciphertext’s attributes. It is therefore possible to import CP-
ABE into the user-middlebox scenario that each middlebox is
assigned with several attributes while an encrypted protocol
session can be specified with an access policy.

The user directly sends the encrypted session keys to the
original destination when doing key sharing. The keys are
encrypted by CP-ABE. In each encryption, the user specifies a
policy to indicate who can decrypt this message. The policy on
each flow is decided according to the user’s permission man-
agement. Each middlebox is assigned with a set of attributes,
including country, institution, application type, and any other
necessary information. Thus a middlebox can decrypt the
message to get the session keys if and only if it is trusted
by the user and selected in the ABE policy.

In order for all the trusted middleboxes to receive the key-
sharing message, the additional message must follow the same
network path of the original data flow. In practice, network
packets are usually load-balanced and distributed into different
paths, however, packets in the same flow identified by 5-
tuple are generally ensured to go through the same path [23].
Therefore, we put the key sharing message into the same
type of packets as the original flow, using the TCP option
or IP option/extension headers to indicate the specific payload
type. Besides re-using the 5-tuple flows, the ISP that runs the
middlebox can also use the service function chaining (sfc) [5]
techniques to ensure the original flow and the extra key-sharing
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message to be forwarded on the same path.

C. Middlebox Authentication

In the design of middlebox authentication, we make use
of a per-user scale authentication instead of per-flow authen-
tication in mcTLS [2]. The reason is that in the access to
the Internet, a user device typically generates a large number
of different sessions. Nielsen reported that each U.S. user
generated 51 sessions in December 2009 [24]. Even accessing
the same site in the same application such as in web browsers,
the user device may also generate several concurrent connec-
tions to improve performance [25]. Meanwhile, a middlebox
typically serves a user for many connections. If a user device
authenticates the same middlebox in each session, it may
generate many repetitive transmissions and increase the traffic
overhead in the protocol handshake.

We next consider how the middlebox identifies a user and
then initiate authentication request. In order to identify whether
a packet comes from a user that has already recognized the
middlebox, it has to use IP address in the packet as an
identifier. In the case of IPv4 NAT that an IPv4 address may
be shared among multiple different user devices, we have to
put additional fields into the packet to help the middlebox.
Consider that the IPv6 address is enough for unique user
identification, the additional field is only required by IPv4
flows. Moreover, consider that the key sharing may only
happen at limited applications on limited flows, there is no
need to put the additional identifier on packets not affected
by PlainBox and the overhead of the additional field can be
reduced. The user device only puts an additional identifier on
the outgoing flows’ handshake packets of which the session
keys may potentially be shared. Since the identifier should be
globally unique, we choose the hash of the DHCP Unique
Identifier (DUID) from DHCPv6 [26], which is widely used
and easy to calculate, as the user’s unique ID. We further
perform a hash to protect the privacy [27].

D. Permission Management

The user agent manages middlebox permissions similar
to the permission management in Android. The permissions
are identified by requested middlebox, target protocol, target
destination, and requested operation. The permission decides
whether the requested middlebox can read or rewrite the data
from this host on the target protocol to the target destination.
The user agent can pre-configure a policy on whether to grant
the permission, e.g., allow all middleboxes from the same
enterprise network and deny all other middleboxes. It can also
interact with the user by popping up a message and let the
user to decide whether to trust.

When the middlebox targets a flow and it has not been
authenticated by the sender, i.e. there is no trusted identifier in
the handshake packets sending from the user side, it initiates an
authentication request to the user carrying its certificate signed
by a trusted certificate authority (CA) and other request infor-
mation. It contains the middlebox’s public key and attributes,
including country, institution, application type, and any other
necessary information.

The operation types on permission include read/only (r/o)
and read/write (r/w). In some middle services, the middlebox

Fig. 3: System architecture in PlainBox user device and
middlebox.

only logs the information from the plain-text flows or directly
blocks the flow, so it only requires r/o permission of the flow. In
other middle services, it also needs to modify the flow content,
such as the content rewrite operations in ALG services, or
sending HTTP redirect messages to users in middle network
storage and firewall services. In this case the r/w permission
is required.

In security protocols, the Message Authentication Code
(MAC) is used for data integrity authentication. With session
encryption key, the middlebox is able to get the original plain-
text however it is unable to modify the content or add insert
new messages since the content is protected by the MAC. To
be able to write to the flow, it has to get the MAC key to change
the validation fields. Therefore, we enable r/o permissions by
only sharing encryption key and r/w permissions by sharing
both encryption key and MAC key.

V. SYSTEM IMPLEMENTATION

We have implemented a prototype system that supports
middlebox authentication and key sharing of TLS 1.2 and
SSH. Figure 3 shows the system architecture and the modules
in PlainBox. Our middlebox successfully gets and decrypts
user data from applications including Firefox(HTTPS) and
OpenSSH(SSH) by displaying the correct plain-text of the
flows.

PlainBox also supports protocol combination such as the
case of HTTPS over IPsec. In this case, our user agent is able
to manage session keys in all encryption protocols. Once the
user decides to trust a middlebox on security protocols, we
are able to share the keys from these applications on their
generation. The middlebox is then able to decrypt the data
from encapsulated packets.

A. User Device Agent

We implement a user agent program on user operating
systems in C++. The task for the user agent is to communicate
with middleboxes, manage middlebox permissions, manage
local session keys, interact with local applications, and interact
with the user. The general logic of our user device agent is
cross-platform while the specific user interface and network
socket programming are OS-specific.
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(a) TLS (b) IPsec (c) SSH

Fig. 4: PlainBox key sharing process in protocol handshakes.

The user agent tracks all local network packets. It is able
to insert content into outgoing packets based on Netfilter and
directly send packets using raw socket in order to send key-
sharing messages to middleboxes. The user OS ignores all
additional fields added by middleboxes by default. When the
user agent receives an authentication request, it first checks
the certificate from the middlebox. If the certificate is valid, it
decides whether to trust the middlebox by the pre-configured
policy or pop up a notification to the user to let the user make
the decision. Once the middlebox is trusted, it is remembered
until the timeout.

The user agent waits for new encryption handshake by
listening on both outgoing packets and application API calls
depending on the specific application implementation. Once a
new handshake is caught, the user agent requests the session
key from the application and shares the key with all trusted
middleboxes. In most encryption protocols, the session keys
are generated after the initial steps of the handshake process
and there are still some remaining steps mainly for authenti-
cation before the transmission of encrypted application data.
After the session keys are generated, the user agent encrypts
them and sends to the trusted middleboxes through the same
flow as the original handshake. Figure 4 demonstrates when
the session key is shared in each protocol’s handshake process.
The encrypted keys are transmitted in an extra packet by
marking a specific TCP option or IP option to signal this
is a PlainBox key-sharing message to the middleboxes. It is
important to ensure that the middlebox could obtain the plain-
text of key materials before it receives encrypted application
data so that the user agent must handle the calculation quickly
enough. Since the encryption on keys takes some time, when
the encrypted application data is generated faster than key en-
cryption, our user device agent will buffer the first data packet
until the keys are encrypted and shared to the middleboxes. Our
evaluation results (§VI-A) show that the PlainBox generates
very small delay on the protocol handshake even using CP-
ABE for key sharing.

In order for the user agent to get the keys from different
applications, the applications need to provide their keys to the
agent. We design a unified API for applications to register
their session keys. In popular web browsers, there are already

built-in APIs that can be used for key registration. In our
prototype, we use the SSLKEYLOGFILE API to export the
master secrets. It is supported by both Firefox and Chrome. For
applications that don’t have built-in key sharing functions, we
modify their source code to call our API for key registration.
We add 47 lines of C code to OpenSSH for the API calls.
As running on the user device, the user agent is considered
trustable for getting all session keys on different applications.
We put the centralized permission management on the user
devices to improve the security of user keys. The session keys
are still safe when exported to the user agent and will not be
obtained by any untrusted middleboxes.

B. Middlebox

The middlebox is also implemented as software in C++.
Though traditional network routers and middleboxes were
often implemented as hardware, the trends on NFV [4] points
out that the middlebox on the next generation network will
be software running on virtualized servers. Our software
middlebox implementation could be easily deployed on a new
network and be easily extended to support new applications,
protocols, and functionalities.

The control plane of the middlebox is responsible for
initiating authentication requests with users and obtaining
session keys. It listens to all passed traffic for the initial
packets of its interested protocols. When the first packet of
the interested protocol arrives and the user is considered not
trusting this, the middlebox sends an authentication request to
the user device with the next packet coming back from the
server to the client. In TCP-based protocols, the middlebox
decides whether the flow comes from a trusting user by the
TCP SYN packet and initiates the authentication request along
with the TCP SYN-ACK packet. By this way, the user can
authenticate the middlebox as soon as possible.

The middlebox waits for the session keys from the user
agent on each target flow on handshake state. For target
protocols, it maintains per-flow state on session state and keys
for further data plane processing. Once the session key of a
flow is present, the flow is then handled by the data plane
decryptor. We use openssl for data encryption and decryption.
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In some protocols, the session key may change during the
transmission of the flow. The control plane is also responsible
for the key changing events and obtaining new keys from
the user agents. For the protocols that split their transport
content into small pieces of chunks before doing encryption,
the middlebox can support handling active flows from the
middlebox of the transmission. In this case, the middlebox will
send authentication requests and wait for session keys from the
user side. Once the key is ready, it begins decrypting the flow
from the first integrated encrypted chunk it receives.

The data plane encryption/decryption engine in middlebox
handles input packets and decrypts the data using the session
keys. When the middlebox services require to rewrite the
content or insert extra messages into the flow, it uses the MAC
keys shared by the users to construct new encrypted packets. It
also supports decrypting encapsulated protocols, e.g., HTTPS
over IPsec. In this case, when it finds an IPsec flow, it decrypts
the flow and redirects a copy of the plain-text output to the
input of the control plane engine. The engine re-processes
it using necessary network-layer information for the original
packet. When a new inner TCP/TLS handshake is identified,
the control plane waits for its session key and then redirects
the TLS flow back to the data plane decryptor.

VI. EVALUATION

In this section, we evaluate the performance and overhead
of the PlainBox system. On the control plane, we focus on
the overhead on time delay by the key sharing protocol, and
the system overhead caused by CP-ABE. On the data plane,
we focus on the overhead on data decrypting and shows the
system performance.

Experimental Setup In the testbed, we run the middleboxes
as well as the clients and the servers at Linux servers running
Ubuntu 14.04. Each server has Intel E5500 2.8Ghz CPU
with 4GB RAM and two 1Gb NICs. We run Firefox as the
client browser and Nginx as the server for HTTPS, OpenSSH
for SSH, and also develop a set of benchmark tools for
performance test. The servers are connected in a chain by 1Gb
links. We add 20ms delay to each link following mcTLS [2].
The error bars indicate standard deviation.

A. Handshake Time

We first measure the time overhead on the protocol hand-
shake after applying PlainBox key-sharing logic. Since Plain-
Box don’t change the original handshake protocol in each
application, the client application begins data transmission
once the session key is present and the handshake is finished.
In all protocols, the client generates the complete key materials
in the middle of the handshake process. After that, it still has
to spend some time on the remaining handshake and waiting
for upper applications.

We denote the time between the client computes the session
key materials and it generates the first encrypted packet for
data transmission as ths. The PlainBox user agent is able to
obtain session keys once the client has generated them. Before
the keys are sent to the middleboxes, the encryption time on
the keys cannot be ignored. After receiving the encrypted keys,
the middlebox also needs some time on the decryption before
it is able to decrypt user data. We denote the time on session
key encryption and decryption as tenc and tdec. If we could
ensure tenc + tdec < ths, the middlebox can have the session
key ready before it receives the first encrypted data packet thus
the PlainBox generates no delay time on the original protocol.
Otherwise, we have to let the user device to buffer the first
data packet until the session keys are encrypted and ready
for sharing, and possibly buffer data packets at the middlebox
before it is ready to decrypt the data.

We measure the handshake time in TLS and SSH by
capturing the handshake messages and count the time interval
between the first handshake packet after client key calculation
and the first encrypted data packet. We count the time interval
for ten times and report the mean. The ths is counted from
the ClientKeyExchange message to the first ApplicationData
message in TLS (Figure 4(a)) and from the ClientNewKeys
message to the first encrypted packet in SSH (Figure 4(c)).
The ths in TLS and SSH includes one RTT between the
client and the server. We use eight attributes for the ABE
encryption which is enough for common key-sharing cases.
The lines marked as NoDelay are the original handshake time
not affected by PlainBox in each protocol, and the lines marked
as PlainBox denote the handshake time after buffering at the
user side.

The result in Figure 5 shows that in TLS and SSH with a
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significant RTT, importing our key-sharing process doesn’t in-
crease the handshake time since there is enough time reserved.
Thus we can conclude that the PlainBox key sharing generally
provides an efficient handshake with a small time overhead.

B. Key Sharing Overhead

We next show the key preparing time tenc and tdec caused
by the PlainBox. In the normal 1:1 client-middlebox key-
sharing mode, the keys are encrypted and decrypted using
normal public/private key cryptography. According to Cryp-
to++ benchmarks [28], it takes several milliseconds for the
RSA-based encryption and decryption which is lower than
the time cost by ABE, therefore we focus on the cost of
ABE encryption. Figure 6 shows the key preparing time tenc
and tdec on TLS using CP-ABE. Each test case consists of
1,000 runs for average. Since our middlebox does not send
out packets when a session key is ready, we measure the time
directly in the program instead of capturing packets. Since
the time complexity on ABE encryption/decryption is mainly
decided by the number of attributes [10], we test the time on
different numbers of attributes. From the result, we know that
the encryption time is the major cost growing with the attribute
numbers, while the decryption time is minor. The total key-
preparing time on eight attributes is around 60ms. Comparing
with the handshake time on encryption protocols, it generally
causes very small delay on the whole handshake.

Figure 7 shows the total handshake size for different proto-
cols with the increase of middleboxes in the path. It compares
the handshake size between 1:1 user-middlebox key sharing
and our PlainBox 1:N key sharing using ABE encryption on
two attributes. In normal 1:1 key sharing, the total handshake
size is a linear relation with the number of middleboxes, while
in PlainBox key sharing it’s constant. In addition, the overhead
on total handshake packet size by ABE-based key sharing in
each protocol is shown in Figure 8. Zero attributes stand for
not sharing keys. Although the additional size on handshake
size has a linear relation with the number of attributes in ABE
encryption, it shows that in a limited number of attributes the
size is still acceptable. Therefore, we can conclude that the
ABE-based key-sharing in PlainBox provides high usability
for user policy management while ensuring low overhead on
multiple middleboxes.

C. System Performance

The computational overhead in PlainBox is mainly caused
by ABE-based encryption and decryption. In each key-sharing
request, the client computes encryption once and each mid-
dlebox computes decryption once. Since some protocol may
support running time key re-generation, a data session may
contain more than one key-sharing request. Figure 9 shows the
CPU usage and the key-sharing requests per second on single
CPU core. The encryption on the client is slower than decryp-
tion on middlebox. Consider that generating new sessions is
not a critical task on user devices, the encryption performance
is acceptable. According to NGINX’s measurement on TLS
server [29], a single-core server handles about 350 RSA-based
requests per second. It shows that our middlebox performance
has the same order and is also acceptable.

In the application data processing, our middlebox performs
normal symmetric encryption/decryption which is the same as
the client and server. Figure 10 shows the system through-
put for different protocols on different middlebox numbers.
We transmit 100MB file in each protocol test case, using
HTTPS for TLS and SFTP for SSH. Each test consists of
ten concurrent connections and repeats for twenty times. The
result shows that although importing data decryption on the
middlebox causes a small slow down on the throughput, adding
more middleboxes doesn’t impact the throughput, therefore our
system is scalable.

VII. RELATED WORK

Decrypting network traffic at middleboxes People have
develop solutions for middlebox decryption on specific pro-
tocols. There are several proposals in the IETF on designing
an explicit proxy for TLS [30], [31]. It requires modifications
on the original TLS handshake and cannot support the TLS-
over-other case, therefore is not a suitable solution. Without
modifying the TLS protocol, transparent proxies can be used
to decrypt the TLS traffic by replacing fake certificates [32].
Although such traffic has already been taking significant place
in the Internet today [33], it is equivalent to a man-in-the-
middle attack and may cause serious security problem.

mcTLS [2] is the first integrated design on the secure
key sharing with middlebox for the TLS protocol. It provides
a certificate-based authentication mechanism for clients and
servers to authenticate middlebox and designs a key-sharing
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protocol to share session keys with middleboxes. Han et al.
[34] designed a framework to use Intel SGX technology to
protect middleboxes on key sharing scheme for encrypted
traffic.

Computing on ciphertext For some specific functional-
ities (e.g., keyword searching), there have been encryption
mechanisms to directly compute on the ciphertext [35]. Blind-
Box [1] is a system for middlebox to perform DPI over
encrypted HTTPS traffic, including keyword search without
decrypting the traffic and a simple method for session key
sharing. Embark [36] extends BlindBox to support a wide
range of middleboxes. It is a system for outsourcing mid-
dlebox to process encrypted traffic without decryption based
on PrefixMatch scheme. SPABox [37] proposed a middlebox
based system that supports DPI over encrypted traffic without
decrypting the traffic.

VIII. CONCLUSION

In this paper, we propose the PlainBox architecture to
enable session key sharing between the communication client
and the middleboxes in the network path. It allows the user
to share his session keys with trusted middleboxes using a
scalable key-sharing protool on multiple middleboxes with
little overhead. We implement a prototype system on sev-
eral security protocols such as TLS, IPsec, SSH, and their
combinations (e.g., TLS over IPsec), and supporting different
applications including web browsers and sftp. Our evaluation
results show that PlainBox only introduces a minor overhead
and provides a good processing performance. Therefore, it is a
practical and efficient solution of building generic and scalable
middlebox services over encrypted protocols.
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